cyclo-

Thermodynamic Properties of Four Ester–Hydrocarbon Mixtures

Tatsuhiko Ohta and Isamu Nagata*

Department of Chemical Engineering, Kanazawa University, Kanazawa, 920, Japan

Vapor-liquid equilibrium data were presented for the systems of ethyl formate-benzene and ethyl formate-cyclohexane at 323.15 K and 66.66 kPa (500 mmHg) and for the systems of ethyl acetate-benzene and ethyl acetate-cyclohexane at 328.15 K. Heat of mixing data were obtained for the former two systems. These two kinds of thermodynamic quantities for each system were simultaneously well correlated with the Wilson and **UNIQUAC** equations having temperature-dependent parameters.

Introduction

This paper presents the experimental data on vapor-liquid equilibrium for the binary systems ethyl formate-benzene and ethyl formate-cyclohexane at 323.15 K and 66.66 kPa (500 mmHg) and ethyl acetate-benzene and ethyl acetate-cyclohexane at 328.15 K and on heats of mixing for the systems ethyl formate-benzene at 298.15, 308.15, and 318.15 K and ethyl formate-cyclohexane at 298.15 and 308.15 K. The equilibrium data of mixtures of ethyl acetate with benzene and cyclohexane have been reported on isobaric vapor-liquid equilibrium (3) and heats of mixing at 308.15 K (13). These two equilibrium data for the four systems were simultaneously correlated with the Wilson and UNIQUAC equations, whose energy parameters were assumed to be a quadratic function of temperature.

Experimental Procedures

Materials. Guaranteed reagent grade ethyl formate was used without further purification. Ethyl acetate was purified in accordance with the procedure of Hurd and Strong (15). Chemically pure benzene was subjected to repeated recrystallization. Guaranteed reagent grade cyclohexane was passed through a 1.2 m by 30 mm i.d. glass column packed with silica gel of chromatographic quality. Values of the boiling points, densities, and refractive indices of the purified materials are compared with the literature values in Table I.

Apparatus. The still used to obtain vapor-liquid equilibrium data was a Scatchard vapor-recirculation still (16), with minor modifications suggested by Renon and Prausnitz (14). Vapor and liquid samples were analyzed by using refractive index measurements at 298.15 K. The measurements of heats of mixing were carried out in two types of calorimeters (6, 8). Further details on the apparatus and experimental technique have been reported previously (6-8).

Experimental Results and Data Analysis

Table II presents vapor-liquid equilibrium data for four binary systems. The liquid-phase activity coefficients were obtained by taking vapor-phase nonideality into account.

$$\gamma_{i} = \frac{\psi_{i} \gamma_{i} P}{\psi_{i}^{s} x_{i} P_{i}^{s} \exp[v_{i}^{L} (P - P_{i}^{s}) / RT]}$$
(1)

where the vapor-phase fugacity coefficients were obtained from the virial equation truncated after the second term (12). Second virial coefficients for pure components and cross coefficients were estimated by using the method of O'Connell and Prausnitz

	formate	acetate	benzene	hexane		
boiling point, K						
exptl	327.15	350.25	353.25	353.95		
lit.	327.30ª	350.264 ^a	353.25 ^a	353.87ª		
density at 298.15						

Table I. Physical Properties of Compounds

K, g/cm ³				
exptl	0.9201 ^b	0.8946	0.8735	0.7739
lit.	• • •	0.89455ª	0.87364ª	0.7737ª
refractive index at				
298.15 K				
exptl	1.35998 ^b	1.3698	1.4979	1.4236
lit.	1.35994 ^{a, b}	1.36979 ^a	1.49792 ^a	1.42354 ^a
Antoine constants				
Α	7.00902 ^c	7.08520 ^d	6.90565 ^a	6.84498 ^a
В	1123.943	1231.47	1211.033	1203.526
С	218.247	215.84	220.790	222.863

^a Reference 15. ^b At 293.15 K. ^c Reference 2. ^d Reference 5.

(11). The liquid molar volumes of each component at three temperatures are available in the literature: benzene and cyclohexane, ref 12; ethyl formate and ethyl acetate, calculated by an equation given by Francis (4). These data were used to determine the constants of a quadratic equation representing the volume-temperature points. Then, the molar volume of each component at any temperature could be calculated. The pure vapor pressure data were taken from the Antoine equation whose constants are given in Table I. The excess Gibbs free energy is calculated by

$$g^{\mathsf{E}} = RT(x_1 \ln \gamma_1 + x_2 \ln \gamma_2) \tag{2}$$

Azeotropic data interpolated from smoothed experimental values are given in Table III.

Table IV lists experimental heat of mixing data for the systems of ethyl formate with benzene and cyclohexane.

The experimental data were analyzed by using the Wilson (12) and UNIQUAC (1) equations. These equations give expressions for $g^{\rm E}$, γ , and $h^{\rm E}$ as follows.

The Wilson equation:

$$g^{E}/RT = -x_{1} \ln (x_{1} + \Lambda_{12}x_{2}) - x_{2} \ln (x_{2} + \Lambda_{21}x_{1})$$
 (3)

$$\ln \gamma_1 = -\ln (x_1 + \Lambda_{12}x_2) + x_2[\Lambda_{12}/(x_1 + \Lambda_{12}x_2) - \Lambda_{21}/(x_2 + \Lambda_{21}x_1)]$$
(4)

$$\ln \gamma_2 = -\ln (x_2 + \Lambda_{21}x_1) - x_1[\Lambda_{12}/(x_1 + \Lambda_{12}x_2) - \Lambda_{21}/(x_2 + \Lambda_{21}x_1)]$$
(5)

$$h^{\mathsf{E}}/R = x_1 x_2 [\Lambda_{12}(\tau_{12}' - \rho_{12}')/(x_1 + \Lambda_{12}x_2) + \Lambda_{21}(\tau_{21}' - \rho_{21}')/(x_2 + \Lambda_{21}x_1)]$$
(6)

where

$$\Lambda_{\mu} = (v_{\mu}^{L} / v_{\mu}^{L}) \exp[-(\lambda_{\mu} - \lambda_{\mu}) / RT]$$
(7)

$$\tau_{ij} = (\lambda_{ij} - \lambda_{ij}) / RT \tag{8}$$

$$\tau_{ij}' = \partial \tau_{ij} / \partial (1/T) \tag{9}$$

$$\rho_{ij} = v_j^{\rm L} / v_i^{\rm L} \tag{10}$$

Table II.	Experimental	Vapor-Liquid	Equilibrium	Data for Four	Binary Systems
	The formation of the second		md annown ann	pate tot i our	

x 1	<i>y</i> ₁	P, kPa	<i>Т</i> , К	γ_1	γ_2	ψ_1	ψ2	$g^{\mathbf{E}}, J/mol$
			Ethyl Formate	(1)-Benzene (2	at 323.15 K			
0.026	0.001	2965	272 15	1 500	1 002	0.096	0.092	41.0
0.020	0.091	10.00	525.15	1.330	1.005	0.900	0.905	41.0
0.162	0.364	48.33		1.270	1.016	0.982	0.979	139.3
0.294	0.536	56.82		1.206	1.031	0.977	0.976	205.4
0.356	0.588	59.85		1.149	1.056	0. 9 76	0.974	226.4
0 4 7 0	0.668	64 97		1 071	1 120	0 974	0 973	247.3
0.594	0.752	70 71		1.025	1 1 96	0.071	0.071	241.0
0.394	0.752	70.71		1.035	1.100	0.9/1	0.971	241.0
0.679	0.808	74.71		1.026	1.226	0.969	0.970	221.8
0.742	0.850	77.30		1.020	1.232	0.968	0.969	184.5
0.830	0.898	80.65		1.004	1.325	0.967	0.968	136.8
0.930	0 964	84.86		1 000	1 270	0.965	0.068	52.3
0.939	0.904	04.00		1.000	1.370	0.905	0.900	52.5
0 109	0 275	Ethyl F	ormate (1)-Ben 334 55	1 337	.66 kPa (500 m 0 991	1mHg) 0978	0 974	653
0.102	0.420	00.00	220 55	1 310	1 014	0.076	0.073	146.4
0.212	0.429		550.55	1.219	1.014	0.970	0.973	140.4
0.312	0.538		327.65	1.143	1.043	0.975	0.973	192.0
0.565	0.739		322.35	1.038	1.134	0.973	0.972	203.3
0.656	0.798		320.75	1.022	1 1 7 9	0.972	0.972	188.3
0.000	0.964		210.05	1.005	1.251	0.071	0.072	149 5
0.767	0.804		319.05	1.005	1.251	0.971	0.973	148.5
0.820	0.895		318.35	0.998	1.285	0.971	0.973	115.9
0.934	0.957		316.85	0.990	1.522	0.970	0.973	47.3
		-						
		Et	hyl Formate (1))-Cyclohexane	(2) at 323.15	ĸ		
0.069	0.378	55.34	323.15	3.535	1.017	0.979	0.972	276.6
0.207	0.568	73.63		2.335	1.093	0.971	0.964	661.5
0.367	0.652	83.26		1 701	1 242	0.966	0.960	892.4
0.507	0.602	05.20		1 472	1 262	0.966	0.050	076 2
0.457	0.082	83.87		1.4/2	1.303	0.903	0.939	920.3
0.573	0.720	88.41		1.274	1.570	0.964	0.958	889.9
0.626	0.742	89.97		1.222	1.679	0.963	0.957	858.1
0 796	0.809	91 59		1.066	2 3 20	0.962	0.957	597.5
0.750	0.007	01.14		1.000	2.520	0.062	0.069	460.7
0.850	0.842	91.14		1.034	2.599	0.962	0.958	460.7
0.978	0.961	88.61		0.998	4.265	0.963	0.961	80.3
		Ethyl Fo:	mate (1)-Cyclo	hexane (2) at 6	5 <mark>6.66 kP</mark> a (500	mmHg)		
0.082	0.419	66.66	326.95	3.469	1.007	0.976	0.968	293.3
0.205	0 578		320.45	2 395	1 069	0 972	0.966	618.8
0.205	0.666		217.25	1.603	1.007	0.071	0.066	956 5
0.390	0.000		517.25	1.002	1.257	0.971	0.900	830.3
0.444	0.673		316.65	1.476	1.368	0.971	0.966	913.4
0.530	0.705		316.05	1.324	1.494	0.970	0.966	886.6
0 599	0 7 2 7		315 45	1 235	1 6 5 9	0 970	0.966	863.6
0.654	0.729		215 45	1 1 4 9	1 045	0.070	0.066	7924
0.034	0.730		515.45	1.140	1.043	0.970	0.900	792.4
0.792	0.799		315.05	1.041	2.393	0.969	0.966	559.4
0.911	0.881		315.25	0.991	3.289	0.969	0.967	255.2
			Ethyl Acetate ((1)-Benzene (2) at 328.15 K			
0122	0.133	44 12	328.15	1.047	1.006	0.978	0.981	30.5
0.241	0.250	11.12	020.10	1.026	1.000	0.076	0.002	29.5
0.341	0.339	44.00		1.020	1.008	0.970	0.962	36.3
0.486	0.500	45.22		1.009	1.01/	0.975	0.982	36.0
0.602	0.610	45.50		0.999	1.032	0.974	0.983	32.6
0 709	0.710	45 81		0.994	1.057	0.973	0.984	31.4
0.836	0.837	15 03		0.006	1.058	0 973	0.985	15.1
0.650	0.857	43.75		0.990	1.058	0.975	0.965	15.1
		E	thyl Acetate (1)	-Cyclohexane	(2) at 328.15 I	ζ.		
0.049	0.129	47.17	328.15	2.699	0.998	0. 9 77	0.977	127.2
0 1 1 9	0 235	51 70		2 211	1.035	0 973	0 975	3397
0.119	0.233	51.70		2.211	1.035	0.071	0.074	444.2
0.180	0.310	54.01		2.010	1.046	0.9/1	0.9/4	444.3
0.210	0.329	54.92		1.858	1.074	0.971	0.974	507.9
0.241	0.3.52	55.44		1.747	1.089	0.970	0.974	543.9
0 255	0.425	57 00		1 472	1 1 7 1	0.068	0 073	6523
0.000	0.440	57.05		1 201	1 202	0.000	0.975	606.0
0.448	0.468	57.85		1.301	1.282	0.968	0.973	090.2
0.527	0.521	58.01		1.234	1.352	0. 96 7	0.974	691.2
0.549	0.528	57.81		1.196	1.392	0.967	0.974	675.7
0 603	0 563	57 61		1 1 5 9	1 4 6 1	0.967	0 974	651.0
0.000	0.000	57.04		1 107	1 600	0.007	0.77	601 7
0.008	0.001	57.20		1.107	1.583	0.96/	0.9/5	001./
0.735	0.644	56.16		1.059	1.739	0. 96 7	0.976	515.1
0.764	0.672	55.46		1.050	1.778	0.968	0.976	472.8
0.821	0 7 2 2	53 46		1 013	1 91 9	0 969	0.978	347.7
0.021	0.020	40.00		1 007	1.717 3.165	0.070	0.070	164 4
0.930	0.009	49.90		1.00/	2.103	0.970	0.901	104.4
0.966	0.924	48.57		1.004	2.520	0.971	0.982	72.8

Table III. Azeotropic Data for Binary Systems

The UNIQUAC equation:

system (1-2)T, K
$$x_1$$
P, kPaethyl formate-cyclohexane323.150.82191.46314.950.81566.66ethyl acetate-cyclohexane328.150.51057.93

 $g^{E}/RT = x_{1} \ln (\phi_{1}/x_{1}) + x_{2} \ln (\phi_{2}/x_{2}) + (Z/2)[q_{1}x_{1} \ln (\theta_{1}/\phi_{1}) + q_{2}x_{2} \ln (\theta_{2}/\phi_{2})] - q_{1}x_{1} \ln (\theta_{1} + \theta_{2}\nu_{21}) - q_{2}x_{2} \ln (\theta_{2} + \theta_{1}\nu_{12})$ (12)

 $\rho_{ij}' = (1/\rho_{ij})\partial\rho_{ij}/\partial(1/T)$

(11)

Ethyl Formate (1)-Benzene (2) ^a									
	298.15 K			15 K	318.1	15 K			
		$h^{\mathbf{E}},$		$h^{\mathbf{E}}$,		$h^{\mathbf{E}}$,			
	<i>x</i> ₁	J/mol	<i>x</i> ₁	J/mol	<i>x</i> ₁	J/mol			
0.0	0691	143.9	0.1094	169.0	0.1133	160.7			
0.1	1609	284.5	0.2112	272.4	0.2036	243.5			
0.1	2089	331.8	0.3063	331.4	0.2531	282.0			
0.3	3142	389.9	0.3985	363.6	0.2978	307.1			
0.3	3826	399.2	0.4044	362.8	0.4126	339.3			
0.4	4555	407.5	0.4909	374.5	0.4284	341.8			
0.4	4969	406.7	0.5797	352.3	0.5558	341.4			
0.0	6999	330.5	0.5869	350.2	0.6019	325.9			
0.3	8093	238.1	0.6936	311.3	0.7139	274.9			
0.	8478	200.8	0 7963	236.8	0 7973	221 3			
0.	8891	149.8	0.8991	136.4	0.7995	221.3			
0.9	9485	77.8	0.0771	150.4	0.8963	130.5			
••••						100.0			
		Ethyl Fo	rmate (1)-	Cyclohexar	1e (2) ⁰				
		298.15 K	<u> </u>	3	08.15 K				
	$x_1 h^{\mathbf{E}}$		^E , J/mol	<i>x</i> ₁	$h^{\mathbf{E}}$,	J/mol			
	0.0518	3	405.0	0.0345	2	78.2			
	0.1083	5	749.4	0.0720	5	33.0			
	0.1723	3	1041.8	0.1123	7	64.4			
	0.2331		1251.4	0.1552	9	69.9			
	0.2987	/ 1	1410.8	10.8 0.2003		46.8			
	0.3639) 1	1516.7	0.2473	12	94.9			
	0.4296 15		l 571.9	0.2958	14	13.4			
	0.4841	. 1	1582.0	0.3453	15	01. 2			
	0.5272 15		1566.9	0.3955	1558.5				
	0.5528 15		L548.9	0.4464	15	87.0			
	0.5844		1515.0	0.4833	15	89.9			
	0.6041	. 1	489.9	0.5082	15	83.2			
	0.6469) 1	1419.6	0.6163	14	82.4			
	0.6942	2 1	1319.6	0.6469	14	29.3			
	0.7448	3 1	184.5	0.6820	13.	56.0			
	0.7957	' 1	1018.0	0.7174	12	67.8			
	0.8462		819.6	0.7534	11	63.6			
	0.8525	;	792.9	0.7891	10	44.7			
	0.9025	;	559.4	0.8247	- 9	10.0			
	0.9515	;	295.0	0.8602	7	59.8			
				0.8956	5	93.3			
				0.9308	4	11.3			
				0.9657	2	13.4			

Table IV. Experimental Heat of Mixing Data for Two Binary Systems

^a Obtained by using the Larkin and McGlashan type calorimeter (8). ^b Obtained by using the Van Ness type calorimeter (6).

 $\ln \gamma_{1} = \ln (\phi_{1}/x_{1}) + (Z/2)q_{1} \ln (\theta_{1}/\phi_{1}) + \phi_{2}[I_{1} - (r_{1}/r_{2})I_{2}] - q_{1} \ln (\theta_{1} + \theta_{2}\nu_{21}) + \theta_{2}q_{1}[\nu_{21}/(\theta_{1} + \theta_{2}\nu_{21}) - \nu_{12}/(\theta_{2} + \theta_{1}\nu_{12})]$ (13)

$$\ln \gamma_2 = \ln (\phi_2/x_2) + (Z/2)q_2 \ln (\theta_2/\phi_2) + \phi_1[I_2 - (r_2/r_1)I_1] - q_2 \ln (\theta_2 + \theta_1\nu_{12}) + \theta_1q_2[\nu_{12}/(\theta_2 + \theta_1\nu_{12}) - \nu_{21}/(\theta_1 + \theta_2\nu_{21})]$$
(14)

$$h^{\mathsf{E}}/R = -q_1 x_1 \theta_2 / (\theta_1 + \theta_2 \nu_{21}) \nu_{21}' - q_2 x_2 \theta_1 / (\theta_2 + \theta_1 \nu_{12}) \nu_{12}'$$
(15)

where

$$\nu_{ij} = \exp[-(u_{ij} - u_{ij})/RT]$$
(16)

$$\nu_{ij}' = \partial \nu_{ij} / \partial (1/T) \tag{17}$$

$$\theta_i = q_i x_i / \sum_j (q_j x_j)$$
(18)

$$\phi_i = r_i x_i / \sum_j (r_j x_j)$$
(19)

			ref	this work	this work	this work	this work	this work	this work	this work	this work	this work	this work	e S	13	this work	e G	13
		m-square , J/mol	UNIQUAC	14.6	16.3	15.9	10.9	8.8	22.6	23.4	30.1	28.0	7.1	10.5	15.5	37.2	24.7	44.4
		root-mea devns,	Wilson I	13.4	18.0	14.6	11.3	7.1	25.5	20.5	16.3	12.1	5.0	9.2	13.0	13.8	6.7	30.5
	04	of data	points	10	8	12	11	12	6	6	20	33	9	13	7	16	13	13
			temp or pressure	323.15 K	66.66 kPa (500 mmHg)	298.15 K	308.15 K	318.15 K	323.15 K	66.66 kPa (500 mmHg)	298.15 K	308.15 K	328.15 K	101.325 kPa (760 mmHg)	308.15 K	328.15 K	101.325 kPa (760 mmHg)	308.15 K
		excess func-	tions	Э	щ	$h^{\rm E}$	$\mu^{\rm E}$	$h^{\rm E}$	щ	щ	$\mu^{\rm E}$	$h^{\rm E}$	щ	щ.	$h^{\rm E}$	щ	щ	hE
		$\frac{E_1/R \times 100}{E_2/R \times 100}$	1/K	-0.0705	0.4112				-0.5472	0.3344			3.2586	-2.1235		1.8103	-2.2712	
	UNIQUAC	D_{i}/R	D_2/R	-1.2197	0.8438				0.5703	-0.8849			-1.2652	0.0380		-1.4255	1.1087	
onstants		C_1/R C_2/R	K,	39.23	-12.67				222.32	-22.40			-49.64	64.75		36.26	89.60	
binary c		$\frac{E_1/R \times 100}{E_2/R \times 100}$	1/K	-0.4784	0.8665				-1.2199	2.5319			-0.5918	1.9120		-0.9102	1.8008	
	Wilson	D,/R	D_2/R	-0.3637	-0.2081				-0.8421	-2.6670			-0.7075	-0.9565		0.4504	-3.3727	
		C_1/R C_3/R ,	ĸ	133.80	2.71				502.63	194.76			144.01	-57.20		310.45	227.29	
			system	ethyl formate (1)-benzene (2)					ethyl formate (1)-cyclohexane (2)				ethyl acetate (1)-benzene (2)			ethyl acetate (1)-cyclohexane (2)		

Table V. Binary Constants of Wilson and UNIQUAC Equations and Root-Mean-Square Deviations for Binary Systems

$$I_{i} = (Z/2)(r_{i} - q_{i}) - (r_{i} - 1)$$
(20)

A simultaneous fit of g^{E} and h^{E} data was attempted by using the Wilson equation (and also the UNIQUAC equation) whose energy parameter differences were assumed to be expressed by a quadratic function of temperature as shown by Nagata and Yamada (9).

$$\lambda_{ij} - \lambda_{ii} = C_i + D_i(T - 273.15) + E_i(T - 273.15)^2$$
 (21)

The constants, C, D, and E, were determined by using the simplex method (10) which minimized the sum of squares of deviations in g^{E} plus that in h^{E} data points. Calculated results for four binary systems agree reasonably well with the experimental values as shown in Table V. The table also indicates that the Wilson equation gives slightly better results than the UNIQUAC equation for two ester-cyclohexane systems.

Acknowledgment

10

The authors are grateful to the Data Processing Center, Kanazawa University, for the use of its facilities. Several students of Kanazawa University assisted with the experimental work.

Glossary

C, D, E	constants of eq 21
g ^E	excess Gibbs free energy, J/mol
hE	excess enthalpy of mixing, J/mol
1	bulk factor defined by eq 20
P _l ^s	vapor pressure of pure component <i>i</i> , kPa
P	total pressure, kPa
q	pure component area parameter
Ŕ	gas constant
r	pure component volume parameter
Τ	absolute temperature, K
U _{ii}	UNIQUAC binary interaction parameter, J/mol
V ^{iL}	liquid molar volume of pure component i, cm ³ /mol
x	liquid-phase mole fraction
у	vapor-phase mole fraction
Ζ	lattice coordination number, a constant set equal to

- Greek Letters
- activity coefficient of component / γ_{i}
- θ, area fraction defined by eq 18
- Λ_{ij} coefficient defined by eq 7
- λ" Wilson binary interaction parameter, J/mol
- volume ratio defined by eq 10 ρij
- coefficient defined by eq 8 au_{ij}
- coefficient defined by eq 16 νų
- φ, volume fraction defined by eq 19
- ψ_i^{ϵ} fugacity coefficient of pure component / at system temperature and Pis
- ψ_{i} fugacity coefficient of component /

Subscript

1

component

- Superscripts
- Ε excess
- e saturation

Literature Cited

- Abrams, D. S., Prausnitz, J. M., *AIChE J.*, **21**, 116 (1975). Boublik. T., Fried, V., Hala, E., "The Vapour Pressures of Pure Substances", Elsevier, New York, 1973, p 123. (2)
- Chao, K. C., Hougen, O. A., Chem. Eng. Sci., 7, 246 (1958).
 Francis, A. W., Chem. Eng. Sci., 10, 37 (1959).
 Merti, I., Collect. Czech. Chem. Commun., 37, 386 (1972). (4)
- (5)
- Nagata, I., Kazuma, K., J. Chem. Eng. Data, 22, 79 (1972). Nagata, I., Kazuma, K., J. Chem. Eng. Data, 22, 79 (1977). Nagata, I., Ohta, T., Ogura, M., Yasuda, S., J. Chem. Eng. Data, 21, 310 (1976). (7)

- (8) Nagata, I., Tago, O., Takahashi, T., *Kagaku Kogaku*, 34, 1107 (1970).
 (9) Nagata, I., Yamada, T., *J. Chem. Eng. Data*, 18, 87 (1973).
 (10) Nelder, J. A., Mead, R., *Comput. J.*, 7, 308 (1965).
 (11) O'Connell, J. P., Prausnitz, J. M., *Ind. Eng. Chem. Process Des. Dev.*, 6, 245 (1967)
- (12) Prausnitz, J. M., Eckert, C. A., Orye, R. V., O'Conneli, J. P., "Computer Calculations for Multicomponent Vapor-Liquid Equilibria", Prentice-Hall, Englewood Cliffs, N.J., 1967.
 (13) Ratnam, A. V., Rao, C. V., Murtl, P. S., Chem. Eng. Sci., 17, 392 (1962).
 (14) Research Development M. Int. Eng. Chem. Process Dev. 7, 2020.
- (14) Renon, H., Prausnitz, J. M., Ind. Eng. Chem. Process Des. Dev., 7, 220
- (1968).
- (15) Riddick, J. A., Bunger, W. B., "Organic Solvents", 3rd ed., Wiley-Inter-science, New York, 1970.
 (16) Scatchard, G., Ticknor, L. B., *J. Am. Chem. Soc.*, **74**, 3724 (1952).

Received for review October 22, 1979. Accepted April 25, 1980.